Riemann zeta function is the most important equation in Number Theory, because it contains the secret of prime number. The Riemann zeta function can be expressed as:
Let's call a positive integer composite if it has at least one divisor other than 1 and itself. For example:
the following numbers are composite: 1024, 4, 6, 9;
the following numbers are not composite: 13, 1, 2, 3, 37
You are given a positive integer d. Find two composite integers a, b such that b−a=d.
It can be proven that solution always exists.
If there are several possible solutions, you can print any.
多筆測資,
每行只有一個正整數 d,
以 EOF 結束。
對於每行讀入的 d,
輸出兩個數字 a, b 符合題目條件,
且 1≤a<b≤4294967295。
100 1
100 200 24 25
對於 40% 的測資,測資行數不會超過 1000 lines。
對於 100% 的測資,測資行數不會超過 50000 lines。
所有的測資,1≤d≤100000000 。
範例測資僅供參考。
本題採 special judge ,若有誤不吝告知。
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」 |